Wikidata:WikiProject Ecology/Task Force Urban Ecology

From Wikidata
Jump to navigation Jump to search
A raccoon exploring a roof
An artistic perspective on urban ecology

About[edit]

Community-built compendium of hypotheses from urban ecology (Q1430301)  View with Reasonator View with SQIDView profile on Scholia: area of study in ecology.

Items[edit]

General concepts[edit]

Urban ecology hypotheses[edit]

Hypothesis Definition Key reference Comments
acoustic adaptation hypothesis (Q115767755)  View with Reasonator View with SQIDView profile on Scholia: hypothesis in ecology Animals that communicate acoustically adapt their vocalisations to the local conditions to optimise signal transmission. Eugene S. Morton (January 1975). "Ecological Sources of Selection on Avian Sounds". The American Naturalist. 109 (965): 17–34. doi:10.1086/282971. ISSN 0003-0147. Wikidata Q29399382.View profile on Scholia
biodiverse cities Cities can sustain and promote biodiversity. Kühn, I., Brandl, R., & Klotz, S. (2004). The flora of German cities is naturally species rich. Evolutionary Ecology Research, 6(5), 749-764; Walters, S.M. (1970). The next twenty years. In The Flora of a Changing Britain (F. Perring, ed.), pp. 136–141. Hampton: Classey.
biodiversity-wealth The socioeconomic status of urban residents is positively related to the biodiversity in their neighbourhoods. Ann P. Kinzig; Paige Warren; Chris Martin; Diane Hope; Madhusudan Katti (2005). "The Effects of Human Socioeconomic Status and Cultural Characteristics on Urban Patterns of Biodiversity". Ecology and Society. 10 (1). doi:10.5751/ES-01264-100123. ISSN 1708-3087. Wikidata Q113689270.View profile on Scholia
cities as entry points Cities are entry points for introduced non-native species. Petr Pysek; Vojtech Jarosík; Philip E Hulme; et al. (7 June 2010). "Disentangling the role of environmental and human pressures on biological invasions across Europe". Proceedings of the National Academy of Sciences of the United States of America. 107 (27): 12157–12162. Bibcode:2010PNAS..10712157P. doi:10.1073/PNAS.1002314107. ISSN 0027-8424. PMC 2901442. PMID 20534543. Wikidata Q30495396.View profile on Scholia; Luke J. Potgieter; Marc W. Cadotte (15 October 2020). "The application of selected invasion frameworks to urban ecosystems". NeoBiota. 62: 365–386. doi:10.3897/NEOBIOTA.62.50661. ISSN 1314-2488. Wikidata Q110663925.View profile on Scholia
credit card Low variability in resource abundance and reduced predation allow higher population densities in urban areas through the persistence of many weak competitors who remain in poor body condition, who are less reproductively successful, and who would not otherwise survive. Eyal Shochat (September 2004). "Credit or debit? Resource input changes population dynamics of city-slicker birds". Oikos. 106 (3): 622–626. doi:10.1111/J.0030-1299.2004.13159.X. ISSN 0030-1299. Wikidata Q115766629.View profile on Scholia
decay paradigm Species richness declines within patches of remnant native habitat isolated within an urban matrix; habitat-dependent (such as ‘forest interior’) species are expected to suffer a progressive series of local extinctions over time. Carla P. Catterall; Jarrad A. Cousin; Scott Piper; Gayle Johnson (12 May 2010). "Long-term dynamics of bird diversity in forest and suburb: decay, turnover or homogenization?". Diversity and Distributions. 16 (4): 559–570. doi:10.1111/J.1472-4642.2010.00665.X. ISSN 1366-9516. Wikidata Q56767210.View profile on Scholia
earlier phenology Seasonal life cycles tend to start earlier in the urban core than in rural surroundings. Roetzer T; Wittenzeller M; Haeckel H; Nekovar J (1 August 2000). "Phenology in central Europe--differences and trends of spring phenophases in urban and rural areas". International Journal of Biometeorology. 44 (2): 60–66. doi:10.1007/S004840000062. ISSN 0020-7128. PMID 10993559. Wikidata Q39547402.View profile on Scholia
ecological trap (Q3389613)  View with Reasonator View with SQIDView profile on Scholia: phenomenon in which species sometimes prefer low-quality habitats Urban habitats act as ecological traps and are preferred over other, higher quality habitats. Because urban habitats are low in quality for reproduction or survival and they may not sustain a population. JAMES BATTIN (December 2004). "When Good Animals Love Bad Habitats: Ecological Traps and the Conservation of Animal Populations". Conservation Biology. 18 (6): 1482–1491. doi:10.1111/J.1523-1739.2004.00417.X. ISSN 0888-8892. Wikidata Q29303269.View profile on Scholia; Martin A. Schlaepfer; Michael C. Runge; Paul W. Sherman (October 2002). "Ecological and evolutionary traps". Trends in Ecology & Evolution. 17 (10): 474–480. doi:10.1016/S0169-5347(02)02580-6. ISSN 0169-5347. Wikidata Q58241224.View profile on Scholia
enemy release hypothesis (Q85759287)  View with Reasonator View with SQIDView profile on Scholia: hypothesis in invasion biology The absence of enemies is a cause of invasion success. Ryan M. Keane; Michael J. Crawley (1 April 2002). "Exotic plant invasions and the enemy release hypothesis". Trends in Ecology & Evolution. 17 (4): 164–170. doi:10.1016/S0169-5347(02)02499-0. ISSN 0169-5347. Wikidata Q55845435.View profile on Scholia
environmental filter Urban habitats filter communities as a function of their traits. Myla F J Aronson; Charles H Nilon; Christopher A Lepczyk; et al. (1 November 2016). "Hierarchical filters determine community assembly of urban species pools". Ecology. 97 (11): 2952–2963. doi:10.1002/ECY.1535. ISSN 0012-9658. PMID 27870023. Wikidata Q36199406.View profile on Scholia
epigenetic adaptation Epigenetic mechanisms can explain why some organisms are more successful in urban than non-urban areas. Caroline Isaksson (11 June 2015). "Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress". Functional Ecology. 29 (7): 913–923. doi:10.1111/1365-2435.12477. ISSN 0269-8463. Wikidata Q115766648.View profile on Scholia
Food-web reshaping hypothesis (Q119137426)  View with Reasonator View with SQIDView profile on Scholia: Urban food webs largely lack weak interactions, but the partly disassembled food webs retain a greater density of species interactions (e.g. greater connectance) Urban food webs largely lack weak interactions, but the partly disassembled food webs retain a greater density of species interactions (e.g. greater connectance). Denon Start; Matthew A Barbour; Colin Bonner (17 December 2019). "Urbanization reshapes a food web". Journal of Animal Ecology. 89 (3): 808–816. doi:10.1111/1365-2656.13136. ISSN 0021-8790. PMID 31677271. Wikidata Q91065132.View profile on Scholia
generalists vs. specialists Species richness in urban habitats is low in specialists but high in generalists. Alberto Sorace; Marco Gustin (April 2009). "Distribution of generalist and specialist predators along urban gradients". Landscape and Urban Planning. 90 (3–4): 111–118. doi:10.1016/J.LANDURBPLAN.2008.10.019. ISSN 0169-2046. Wikidata Q115569814.View profile on Scholia
genetic signatures Genetic signatures of urban eco-evolutionary feedback can be detected across multiple taxa and ecosystem functions. Marina Alberti (12 December 2014). "Eco-evolutionary dynamics in an urbanizing planet". Trends in Ecology & Evolution. 30 (2): 114–126. doi:10.1016/J.TREE.2014.11.007. ISSN 0169-5347. PMID 25498964. Wikidata Q35512580.View profile on Scholia
green roofs Green roofs promote urban biodiversity. Erica Oberndorfer; Jeremy Lundholm; Brad Bass; et al. (16 November 2007). "Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services". BioScience. 57 (10): 823–833. doi:10.1641/B571005. ISSN 0006-3568. Wikidata Q112773914.View profile on Scholia; Nicholas S. G. Williams; Jeremy Lundholm; J. Scott MacIvor (3 October 2014). "FORUM: Do green roofs help urban biodiversity conservation?". Journal of Applied Ecology. 51 (6): 1643–1649. doi:10.1111/1365-2664.12333. ISSN 0021-8901. Wikidata Q115408794.View profile on Scholia
habitat diversity Biodiversity in urban areas is high due to habitat diversity. Pyšek, P. (1989). On the richness of Central European urban flora. Preslia 61(4), 329.
habitat isolation More isolated habitat islands have lower species richness. Robert MacArthur; Edward O. Wilson (1967), The Theory of Island Biogeography, Princeton University Press, Wikidata Q7768659View profile on Scholia
herbivore proliferation Herbivores may become hyperabundant in urban areas, sometimes leading to pest outbreaks. Michael J Raupp; Paula M Shrewsbury; Daniel A Herms (1 January 2010). "Ecology of herbivorous arthropods in urban landscapes". Annual Review of Entomology. 55: 19–38. doi:10.1146/ANNUREV-ENTO-112408-085351. ISSN 0066-4170. PMID 19961321. Wikidata Q37644487.View profile on Scholia
high propagule pressure in cities A higher proportion of alien taxa in captivity and cultivation leads to an increased propagule pressure in cities. Ingolf Kühn; Janis Wolf; Aline Schneider (17 October 2017). "Is there an urban effect in alien plant invasions?". Biological Invasions. 19 (12): 3505–3513. doi:10.1007/S10530-017-1591-1. ISSN 1387-3547. Wikidata Q56817029.link=//scholia.toolforge.org/Q56817029}; Potgieter, L. J., & Cadotte, M. W. (2020). The application of selected invasion frameworks to urban ecosystems. NeoBiota 62, 365.; Fischer, J.D., Cleeton, S.H., Lyons, T.P. & Miller, J.R. (2012). Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. BioScience 62: 809-818.; Eötvös, C. B., Magura, T., & Lövei, G. L. (2018). A meta-analysis indicates reduced predation pressure with increasing urbanization. Landscape and Urban Planning 180: 54-59.
prey specialization "The diet of carnivorous mesopredators will be increasingly dominated by a few species with urbanization. These prey species will be hyperabundant within cities. The predation rate on prey species that are not hyperabundant will decline with urbanization." (p. 816 in Fischer et al. 2012) Jason D. Fischer; Sarah H. Cleeton; Timothy P. Lyons; James R. Miller (September 2012). "Urbanization and the Predation Paradox: The Role of Trophic Dynamics in Structuring Vertebrate Communities". BioScience. 62 (9): 809–818. doi:10.1525/BIO.2012.62.9.6. ISSN 0006-3568. Wikidata Q115514085.View profile on Scholia
rapid adaptation Rates of evolutionary change are greater in urbanizing systems. Marina Alberti; Cristian Correa; John Marzluff; et al. (3 January 2017). "Global urban signatures of phenotypic change in animal and plant populations". Proceedings of the National Academy of Sciences of the United States of America. 114 (34): 8951–8956. doi:10.1073/PNAS.1606034114. ISSN 0027-8424. PMC 5576774. PMID 28049817. Wikidata Q36239047.View profile on Scholia; Marc T J Johnson; Jason Munshi-South (1 November 2017). "Evolution of life in urban environments". Science. 358 (6363). doi:10.1126/SCIENCE.AAM8327. ISSN 0036-8075. PMID 29097520. Wikidata Q46269820.View profile on Scholia
resiliance of urban hybrid systems "Resilience in urban ecosystems is a function of the patterns of human activities and natural habitats that control and are controlled by both socio-economic and biophysical processes operating at various scales". (p. 242 in Alberti & Marzluff 2004) Marina Alberti; John M. Marzluff (September 2004). "Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions". Urban Ecosystems. 7 (3): 241–265. doi:10.1023/B:UECO.0000044038.90173.C6. ISSN 1083-8155. Wikidata Q113856901.View profile on Scholia
shift toward non-migratory species Urbanization favors non-migratory species. H. Elliott McClure (1989). "What characterizes an urban bird?". Journal of the Yamashina Institute for Ornithology. 21 (2): 178–192. doi:10.3312/JYIO1952.21.178. ISSN 1883-3659. Wikidata Q115766931.View profile on Scholia
species richness - HPD Species richness is positively correlated with human population density. Gary W Luck (1 November 2007). "A review of the relationships between human population density and biodiversity". Biological Reviews. 82 (4): 607–645. doi:10.1111/J.1469-185X.2007.00028.X. ISSN 1464-7931. PMID 17944620. Wikidata Q36974785.View profile on Scholia
species-area relationship Species richness and diversity increase with habitat size. Robert MacArthur; Edward O. Wilson (1967), The Theory of Island Biogeography, Princeton University Press, Wikidata Q7768659View profile on Scholia
street barrier effect Streets act as dispersal barriers. H.-J. Mader (1984). "Animal habitat isolation by roads and agricultural fields". Biological Conservation. 29 (1): 81–96. doi:10.1016/0006-3207(84)90015-6. ISSN 0006-3207. Wikidata Q115766936.View profile on Scholia
street corridor effect Streets act as dispersal corridors. Wendy A. Seabrook; E. Belinda Dettmann (April 1996). "Roads as Activity Corridors for Cane Toads in Australia". Journal of Wildlife Management. 60 (2): 363. doi:10.2307/3802236. ISSN 0022-541X. Wikidata Q115766947.View profile on Scholia ; Adam R. C. James; A. Kari Stuart-Smith (January 2000). "Distribution of Caribou and Wolves in Relation to Linear Corridors". Journal of Wildlife Management. 64 (1): 154. doi:10.2307/3802985. ISSN 0022-541X. Wikidata Q115766952.View profile on Scholia ; Moritz von der Lippe; James M Bullock; Ingo Kowarik; Tatjana Knopp; Matthias C Wichmann; Matthias Wichmann (2013). "Human-mediated dispersal of seeds by the airflow of vehicles". PLOS One. 8 (1): e52733. Bibcode:2013PLoSO...852733V. doi:10.1371/JOURNAL.PONE.0052733. ISSN 1932-6203. PMC 3540062. PMID 23320077. Wikidata Q27324107.View profile on Scholia
suburban peak Species richness is highest in sub-urban areas; it is lower in urban centers and the (rural) periphery. Robert B. Blair (2001), Birds and Butterflies Along Urban Gradients in Two Ecoregions of the United States: Is Urbanization Creating a Homogeneous Fauna?, pp. 33–56, doi:10.1007/978-1-4615-1261-5_3, Wikidata Q115766959View profile on Scholia
synanthropic species The number of synanthropic species increases along the rural-urban gradient. Klausnitzer, B. (1987). Ökologie der Großstadtfauna. Stuttgart, New York: Fischer. p 106; Adrien Guetté; Pierre Gaüzère; Vincent Devictor; Frédéric Jiguet; Laurent Godet (August 2017). "Measuring the synanthropy of species and communities to monitor the effects of urbanization on biodiversity". Ecological Indicators. 79: 139–154. doi:10.1016/J.ECOLIND.2017.04.018. ISSN 1470-160X. Wikidata Q115450533.View profile on Scholia
thermal tolerance increase Thermal tolerance increases with urbanization. Sarah E. Diamond; Lacy D Chick; Abe Perez; Stephanie A Strickler; Ryan A. Martin (4 July 2018). "Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities". Proceedings of the Royal Society B. 285 (1882). doi:10.1098/RSPB.2018.0036. ISSN 0962-8452. PMC 6053939. PMID 30051828. Wikidata Q90561336.View profile on Scholia
urban avoiders Urban avoiders have a reduced ability to adapt, compete and/or reproduce in cities. Robert B. Blair (May 1996). "Land Use and Avian Species Diversity Along an Urban Gradient". Ecological Applications. 6 (2): 506–519. doi:10.2307/2269387. ISSN 1051-0761. JSTOR 2269387. Wikidata Q55839786.View profile on Scholia
urban biodiversity hot spots Cities are often located in areas of high biodiversity and urbanization is disproportionally higher in areas with high biodiversity. Kühn, I., Brandl, R., & Klotz, S. (2004). The flora of German cities is naturally species rich. Evolutionary Ecology Research 6: 749-764.; Gary W Luck (1 November 2007). "A review of the relationships between human population density and biodiversity". Biological Reviews. 82 (4): 607–645. doi:10.1111/J.1469-185X.2007.00028.X. ISSN 1464-7931. PMID 17944620. Wikidata Q36974785.View profile on Scholia; Christopher D. Ives; Pia E. Lentini; Caragh G. Threlfall; et al. (7 December 2015). "Cities are hotspots for threatened species". Global Ecology and Biogeography. 25 (1): 117–126. doi:10.1111/GEB.12404. ISSN 1466-8238. Wikidata Q56674888.View profile on Scholia
urban biotic homogenization hypothesis (Q119137512)  View with Reasonator View with SQIDView profile on Scholia: Hypothesis stating that species composition of different cities will become more and more similar as urbanization increases. Species composition of different cities will become more and more similar as urbanization increases. Blair, R. B. (2001). Birds and butterflies along urban gradients in two ecoregions of the United States: is urbanization creating a homogeneous fauna? Biotic Homogenization (eds J.L. Lockwood & M.L. McKinney), pp. 33-56. Springer, Boston, MA.; Michael L. McKinney (January 2006). "Urbanization as a major cause of biotic homogenization". Biological Conservation. 127 (3): 247–260. doi:10.1016/J.BIOCON.2005.09.005. ISSN 0006-3207. Wikidata Q56781794.View profile on Scholia; Peter M Groffman; Jeannine Cavender-Bares; Neil D Bettez; et al. (February 2014). "Ecological homogenization of urban USA". Frontiers in Ecology and the Environment. 12 (1): 74–81. doi:10.1890/120374. ISSN 1540-9295. Wikidata Q57068924.View profile on Scholia
urban core herbivore decline The abundance of alien plants in the urban core tends to reduce the richness and abundance of native herbivore insects incapable of using non-native plants. Michael J Raupp; Paula M Shrewsbury; Daniel A Herms (1 January 2010). "Ecology of herbivorous arthropods in urban landscapes". Annual Review of Entomology. 55: 19–38. doi:10.1146/ANNUREV-ENTO-112408-085351. ISSN 0066-4170. PMID 19961321. Wikidata Q37644487.View profile on Scholia
urban density-diversity paradox Diversity typically increases as the number of individuals increase in biological communities. Urban environments, however, tend to be characterized by lower biodiversity than wildlands despite high population densities. Eyal Shochat; Susannah B. Lerman; John M. Anderies; Paige S. Warren; Stanley H. Faeth; Charles H. Nilon (March 2010). "Invasion, Competition, and Biodiversity Loss in Urban Ecosystems". BioScience. 60 (3): 199–208. doi:10.1525/BIO.2010.60.3.6. ISSN 0006-3568. Wikidata Q56768361.View profile on Scholia; Susanna Saari; Scott Richter; Michael Higgins; Martina Oberhofer; Andrew Jennings; Stanley H. Faeth (10 March 2016). "Urbanization is not associated with increased abundance or decreased richness of terrestrial animals - dissecting the literature through meta-analysis". Urban Ecosystems. 19 (3): 1251–1264. doi:10.1007/S11252-016-0549-X. ISSN 1083-8155. Wikidata Q115467443.View profile on Scholia
urban eco-evolutionary mechanism (Q110537163)  View with Reasonator View with SQIDView profile on Scholia: concept in urban ecology "Through urbanization, humans mediate the interactions and feedback between evolution and ecology in subtle ways by introducing changes in habitat, biotic interactions, heterogeneity, novel disturbance, and social interactions." (p. 116 in Alberti 2015) Marina Alberti (12 December 2014). "Eco-evolutionary dynamics in an urbanizing planet". Trends in Ecology & Evolution. 30 (2): 114–126. doi:10.1016/J.TREE.2014.11.007. ISSN 0169-5347. PMID 25498964. Wikidata Q35512580.View profile on Scholia
urban ecosystem convergence All ecosystems types respond to urban land use in a convergent manner (in other words: urban ecosystems are convergent regardless of the original ecosystem they replaced). Pouyat R. V., Russell-Anelli, J., Yesilonis, I. D. & Groffman, P. M. (2003). Soil carbon in urban forest ecosystems. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. Kimble J. M., L. S. Heath, R. A. Birdsey, and R. Lal (eds.) CRC Press, Boca Raton, FL. (p. 358)
urban ecosystems as source of innovation "The hybrid nature of urban ecosystems – resulting from co-evolving human and natural systems – is a source of ‘innovation’ in eco-evolutionary processes. " (p. 117 in Alberti 2015) Marina Alberti (12 December 2014). "Eco-evolutionary dynamics in an urbanizing planet". Trends in Ecology & Evolution. 30 (2): 114–126. doi:10.1016/J.TREE.2014.11.007. ISSN 0169-5347. PMID 25498964. Wikidata Q35512580.View profile on Scholia
urban fragmentation Urbanization [ specifically the fragmentation of habitats] leads to a loss of genetic variation within and increased differentiation between populations. Lindsay S Miles; L Ruth Rivkin; Marc T J Johnson; Jason Munshi-South; Brian C Verrelli (24 September 2019). "Gene flow and genetic drift in urban environments". Molecular Ecology. 28 (18): 4138–4151. doi:10.1111/MEC.15221. ISSN 0962-1083. PMID 31482608. Wikidata Q93091586.View profile on Scholia
urban habitat analogues Native species can switch to urban habitats. M. Rikli (1903). "Die Anthropochoren und der Formenkreis des Nasturtium palustre DC". Berichte der Schweizerischen Botanischen Gesellschaft (in German). 13: 71–102. doi:10.5169/SEALS-13224. ISSN 0366-3094. Wikidata Q105644583.View profile on Scholia; Linkola, K. (1916). Studien über den einfluss der Kultur auf die Flora in den gegenden nördlich vom Ladogasee. I Allgemeiner Teil. Acta Societatis pro Fauna et Flora Fennica 45: 1-429.; Thellung, A. (1919). Zur Terminologie der Adventiv-und Ruderalfloristik. Allgemeine Botanische Zeitschrift 24: 36-42.; Jeremy T. Lundholm; Paul J. Richardson (5 August 2010). "MINI-REVIEW: Habitat analogues for reconciliation ecology in urban and industrial environments". Journal of Applied Ecology. 47 (5): 966–975. doi:10.1111/J.1365-2664.2010.01857.X. ISSN 0021-8901. Wikidata Q112798276.View profile on Scholia
urban mesopredator release "The abundance of large-bodied predators will decline with urbanization, whereas the abundance of mesopredators will increase." (p. 816 in Fischer et al. 2012) Kevin R. Crooks; Michael E. Soulé (August 1999). "Mesopredator release and avifaunal extinctions in a fragmented system". Nature. 400 (6744): 563–566. doi:10.1038/23028. ISSN 1476-4687. Wikidata Q56040736.View profile on Scholia; Jason D. Fischer; Sarah H. Cleeton; Timothy P. Lyons; James R. Miller (September 2012). "Urbanization and the Predation Paradox: The Role of Trophic Dynamics in Structuring Vertebrate Communities". BioScience. 62 (9): 809–818. doi:10.1525/BIO.2012.62.9.6. ISSN 0006-3568. Wikidata Q115514085.View profile on Scholia
urban sexual traits In urban environments, species show shifts in several traits related to sexual selection (particularly in their coloration, acoustic signals including songs and calls, hormones, pheromones, mating behaviour). Tuul Sepp; Kevin J. McGraw; Mathieu Giraudeau (5 May 2020), Urban Sexual Selection, pp. 234–252, doi:10.1093/OSO/9780198836841.003.0014, Wikidata Q115767010View profile on Scholia
urbanization ecosystem functioning Urbanization leads to a reduction in ecosystem functions and services. Nancy B Grimm; Stanley H Faeth; Nancy E Golubiewski; Charles L Redman; Jianguo Wu; Xuemei Bai; John M Briggs (1 February 2008). "Global change and the ecology of cities". Science. 319 (5864): 756–760. doi:10.1126/SCIENCE.1150195. ISSN 0036-8075. PMID 18258902. Wikidata Q33318748.View profile on Scholia
urbanization tolerance Biodiversity loss in cities is largely caused by a low tolerance of species to urbanization. Daniel Sol; Cesar González-Lagos; Darío Moreira; Joan Maspons; Oriol Lapiedra (19 May 2014). "Urbanisation tolerance and the loss of avian diversity". Ecology Letters. 17 (8): 942–950. doi:10.1111/ELE.12297. ISSN 1461-023X. PMID 24835452. Wikidata Q46893506.View profile on Scholia

Principles of urban ecology[edit]

A principle "can be a concept, a definition used to translate concepts to specific cases, a definition of a quantitative convention wihin a model, a confirmed empirical generalization or a law" (Pickett & Cadenasso, 2017)[1]

Queries[edit]

List of hypotheses studied by urban ecology[edit]

The following query uses these:

  • Properties: instance of (P31)  View with Reasonator View with SQID, studied in (P2579)  View with Reasonator View with SQID
    SELECT ?hypothesis ?hypothesisLabel WHERE {
      ?hypothesis wdt:P31 wd:Q41719 ;
            wdt:P2579 wd:Q1430301 .
    SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }  
    }
    

Taxa associated with urban forests[edit]

The following query uses these:

  • Properties: main subject (P921)  View with Reasonator View with SQID, instance of (P31)  View with Reasonator View with SQID, subclass of (P279)  View with Reasonator View with SQID, part of (P361)  View with Reasonator View with SQID, facet of (P1269)  View with Reasonator View with SQID, taxon name (P225)  View with Reasonator View with SQID
    #defaultView:Table
    
    PREFIX target: <http://www.wikidata.org/entity/Q1197552> 
    
    SELECT ?count 
           ?topic ?topicLabel 
           ?example_work ?example_workLabel 
    WITH {
      SELECT (COUNT(?work) AS ?count) ?topic (SAMPLE(?work) AS ?example_work) WHERE {
        # Find works for the specific queried topic
    	  ?work wdt:P921/( wdt:P31*/wdt:P279* | wdt:P361+ | wdt:P1269+) target: .
        
        # Find co-occuring topics
        ?work wdt:P921 ?topic .
        
        # Filter for taxa
        ?topic wdt:P225 [] .
        
        # Avoid listing the queried topic
          FILTER (target: != ?topic)
      }
      GROUP BY ?topic
    } AS %result
    WHERE {
      # Label the results
      INCLUDE %result
      SERVICE wikibase:label { bd:serviceParam wikibase:language "en,da,de,es,fr,jp,nl,no,ru,sv,zh" . } 
    }
    ORDER BY DESC(?count)
    

Subpages[edit]

This Task Force has the following subpages:

References[edit]

  1. Steward T. A. Pickett; Mary L. Cadenasso (11 February 2017). "How many principles of urban ecology are there?". Landscape Ecology. 32 (4): 699–705. doi:10.1007/S10980-017-0492-0. ISSN 0921-2973. Wikidata Q59612699.View profile on Scholia

Participants[edit]

You can add yourself to this list by editing Wikidata:WikiProject Ecology/Task Force Urban Ecology/Participants.


See also[edit]